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Abstract: Particulate matters (PM) at the pedestrian level significantly raises the health impacts in 

the compact urban environment of Hong Kong. A detailed investigation of the fine-scale spatial 

variation of pedestrian-level PM is necessary to assess the health risk to pedestrians in the outdoor 

environment. However, the collection of PM data is difficult in the compact urban environment of 

Hong Kong due to the limited amount of roadside monitoring stations and the complicated urban 

context. In this study, we measured the fine-scale spatial variability of the PM in three of the most 

representative commercial districts of Hong Kong using a backpack outdoor environmental 

measuring unit. Based on the measurement data, 13 types of geospatial interpolation methods were 

examined for the spatial mapping of PM2.5 and PM10 with a group of building geometrical 

covariates. Geostatistical modelling was adopted as the basis of spatial interpolation of the PM. The 

results show that the original cokriging with the exponential kernel function provides the best 

performance in the PM mapping. Using the fine-scale building geometrical features as covariates 

slightly improves the interpolation performance. The study results also imply that the fine-scale, 

localized pollution emission sources heavily influence pedestrian exposure to PM. 

Keywords: particulate matters; fine-scale spatial variability; pedestrian level; geospatial 

interpolation 

 

1. Introduction 

Over the past few decades, the adverse impacts of urban air pollution on public health have 

been increasingly identified as a global problem [1,2]. Pedestrians in the urban outdoor space are 

more and more often exposed to harmful ambient environments with different air pollution sources 

(including but not limited to the traffic-related pollution, household air pollution, and commercial 

cooking smoke exhaust from roadside buildings) [3]. The human exposure to the particulate matters 

(PM), for example, PM2.5 (particles with an aerodynamic diameter <2.5 μm) and PM10 (particles with 

an aerodynamic diameter <10 μm), has also been associated with many negative health outcomes 

[4,5]. In a highly urbanized area, the dense building clusters form street canyons with heavy 

motor-traffic flows. Under such circumstance, the air movements are stagnant [6] and the pollutant 

dispersion is significantly decelerated [7]. As a consequence, the health risks of pollution exposure in 

such pollutant-concentrated street environment will be considerably increased [8].  
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Hong Kong, as one of the most densely populated cities around the world, has an extremely 

compact urban environment [9]. Pedestrians are exposed to severe air pollution from the motor 

traffic [10–12]. PM exposure has been investigated and proved to be strongly associated with health 

burdens [13,14]. The intensive urban development also makes the distribution of pollution emission 

sources (both traffic and fixed point source emissions) more complicated and the relevant analysis 

has to be performed at a much finer scale. Such context leads to a considerably high spatial 

variability of the particulate matters at a fine scale (a microenvironmental scale). It has been 

emphasized that monitoring the spatial changes of urban air quality is essential [15]. The above 

indicates the need for a detailed investigation of the fine-scale spatial variation of air quality in the 

compact and diverse urban environment of Hong Kong in the assessment of health risk to 

pedestrians in the outdoor environment. 

However, the PM data monitored by the local air quality monitoring network managed by the 

government authorities cannot provide microenvironmental scale information for individual-level 

health risk assessments [16]. In Hong Kong, the hourly air quality condition is currently monitored 

by a local air pollution monitoring network managed by the Environmental Protection Department 

of Hong Kong (HKEPD). Among the 15 stations of this network, only three are placed on the 

roadside [17]. The real challenge in the investigation of the spatial variability of air quality is that 

Hong Kong has an extremely heterogeneous built environment. This heterogeneity results in large 

variations between different locations of the city. Even in a single district, conditions cannot be 

effectively observed by the three fixed roadside air quality stations. There will be large uncertainties 

and errors in using the PM data of a fixed station for the pedestrian health risk assessment [15]. 

Many efforts have been made to investigate the pedestrian exposure to PM in urban sites of Hong 

Kong with heavy traffic conditions [18–21], but they are all based on the data from a couple of fixed 

monitoring locations. The neural network is also a useful method of forecasting the traffic-related 

pollutant concentrations [22]. In Hong Kong, another attempt of forecasting the air quality in a dense 

commercial district has been made by developing a neural network model [23]. However, it only 

provides temporal forecast but not spatial estimation. The lack of the information of fine-scale 

spatial variability is still a major limitation in the evaluation of individual exposure to the 

pedestrian-level air pollution [24,25]. 

To overcome the above limitations, this study aims to initially investigate the fine-scale spatial 

variability of PM in the typical compact urban environment by conducting a pilot test of pedestrian 

level PM measurement by walking through selected urban areas. The geostatistical technique will be 

used to analyse the data and to map the microenvironmental PM spatial variation. The 

microenvironmental scale mapping of pedestrian-level PM provides better spatial information for 

exposure assessment and environmental management. The experience from this initial study and 

pilot test will provide a valuable knowledge basis for further environmental mapping studies and 

individual exposure assessments in Hong Kong.  

2. Materials and Methods  

In this study, a pilot test was designed and performed. First, we measured the fine-scale spatial 

variability of the PM2.5 and PM10 in three of the most representative compact commercial districts of 

Hong Kong using a self-assembled backpack outdoor environmental measuring unit (temperature, 

humidity, PM concentration, and real-time geographical locations). Based on the spatial PM onsite 

measurement data, geostatistical semivariogram modelling was then performed and used as the 

basis of spatial interpolation of the PM data. A total of 13 types of geospatial interpolation methods 

were examined for the spatial mapping of PM2.5 and PM10 with a group of building 

geometrical/urban setting covariates. The optimal method was determined by comparing the 

interpolation performance. Finally, geospatial mapping of PM2.5 and PM10 was conducted by using 

the optimal interpolation method determined by the above step. Cross validation was performed to 

examine the prediction performance of the resultant geospatial mapping.  
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2.1. Study Areas 

Three study areas—Mong Kok, Tsim Sha Tsui and Causeway Bay—were selected for this pilot 

study of microenvironmental PM mapping (Figure 1). Mong Kok and Causeway Bay are two 
generally concerned hotspot districts of pedestrian level air pollution where the HKEPD roadside 

stations are placed [26]. Tsim Sha Tsui is also one of the best known commercial districts and tourist 

sightseeing areas located in the compact downtown area of the Kowloon peninsula. However, it is 

not monitored by any HKEPD roadside station despite being a dense urban core with heavy traffic. 

Therefore, it is also selected as a study area. 

With regards to the population density, all three districts are extremely densely populated. 

They all have a population density over 30,000 people/km2 (the average population density of Hong 

Kong is about 7000 people/km2). As the best known and representative compact commercial districts 

of Hong Kong, these three districts are quite similar in terms of land use, urban functions (highly 

mixed high-rise commercial mansions, shopping centers with some densely built residential 

buildings), and traffic conditions (intensive traffic and pedestrians’ outdoor activities). The activities 

and behaviors of the pedestrians in these three districts are also similar (leisure and entertainment, 

shopping). Moreover, the types of the fine-scale emission sources in these three districts are also 

similar (as mentioned in the paper, vehicular pollutants, the densely distributed bus stops [27], 

restaurants and commercial cooking [28], etc.). The above similarities not only provide a 

representative context for investigating fine-scale human exposure but also make the three an ideal 

study site group for observing the effect of buildings on the fine-scale pollution dispersion. 

 

Figure 1. The location and the building morphology of the three study areas (the size of the red 

rectangle is 500 × 500 m). 

These three intraurban areas represent two distinct urban morphological characteristics. As one 

of the most famous urban commercial districts and tourist attractions in Hong Kong, Mong Kok has 

a road network and a zoning plan based on a classical orthogonal grid. This orthogonal grid layout 

has been widely used in urban planning in intraurban areas with flat terrain (Many famous large 

cities around the world have the similar orthogonal grid layout such as Manhattan in New York, 

Vancouver and Barcelona [29]). Compared with Mong Kok, both Tsim Sha Tsui and Causeway Bay 
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have a more irregular urban road network due to the irregular terrain and the costal location. Mong 

Kok also has a relatively lower and more homogeneous building height distribution than Causeway 

Bay. The building morphology of the Tsim Sha Tsui area is more similar to the Causeway Bay, but 

with a more compact layout. 

The urbanization process significantly changes the aerodynamic roughness in the urban area 

[30,31]. It consequently alters the near-surface wind field and weakens the dispersion of air pollution 

[32]. The compact urban morphology in Hong Kong, especially in the three study areas, shapes the 

very deep street canyons (implying a slower dispersion) with large traffic volume (leading to a 

larger emission intensity). Therefore, it would be helpful to incorporate the consideration of urban 

morphology into the geospatial analysis of this study.  

2.2. Field Measurement 

A self-assembled backpack outdoor environmental measuring unit was prepared for the field 

measurement (Figure 2). The PM2.5 and PM10 were continuously sampled using the TSI 

DUSTTRAK™ DRX Aerosol Monitor Model 8534 (the DUSTTRAK monitor) with a sampling 

interval of 1 s. The inlet sampling tube was installed at the height of 2.00 m above the ground surface 

in order to reflect the pedestrian-level condition without random influence by near temporary 

emission sources that are out of the study scope (e.g., smokers). Before the field measurement, the 

advanced calibration procedure of the DUSTTRAK monitor (recommended by the manufacturer) 

was conducted based on the concentration data from the simultaneous gravimetric PM2.5 and PM10 

sampling at a local air quality monitoring station [33] (the Mong Kok roadside station). Air 

temperature (Ta, °C) and relative humidity (RH, %) were simultaneously measured by an Onset™ 

HOBO U12-012 weather sensor (HOBO). The HOBO-measured data were used for the RH 

calibration of the measured PM2.5 and PM10 data. The DUSTTRAK-measured data were corrected 

using simultaneously measured relative humidity (RH) and the following equation [34]: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 = 1 + 0.25
𝑅𝐻2

(1 − 𝑅𝐻)
 (1) 

In Hong Kong, the pedestrian level wind speed is already very low [35] under a calm or light 

wind condition. The backpack measurement unit is moving (similar to a typical pedestrian on the 

streets of Hong Kong) which means that it is difficult to get a precise measurement of wind speed. 

Global solar radiation is not measured as well, as the compact urban morphology is already a 

modifying factor of the wind speed and solar flux (the building morphological factors were selected 

as the covariates for the geointerpolation of this study). A GPS logger (GarminTM GPS 62 s model, 

with an accuracy of location within 4.0 m) was used to record the corresponding geographical 

location of each measurement data. All the instruments were synchronized to Coordinated 

Universal Time (UTC) to make sure that the data logging timeline is synchronized.  

Due to the seasonal variation of the regional weather system, the air pollution condition in 

Hong Kong is dominated by the regional air pollution (with a higher PM concentration) during the 

winter time [36]. This regional-dominant pollution mode affects Hong Kong one-third of the time in 

a year [37]. In this study, the regional-dominant influence of the long-distance transportation of air 

pollution from the Pearl River Delta (PRD) region of mainland China is out of the study scope. The 

air quality is dominated by local emission sources during summer time [20,38]. In order to minimize 

the influence of high background concentration [20], all measurement campaigns were performed 

under the typical summer weather condition of Hong Kong (no rainfall; partially cloudy [39]; calm 

or light wind condition [7,40]—a Beaufort wind scale <2 in this study; RH around 85% according to 

the Hong Kong Observatory [41]). All the three sampling sessions for the three study areas were 

performed from June to July 2015 (typical summer without extreme weather condition/events). The 

diurnal pattern of the PM concentration level monitored at the Mong Kok roadside air quality 

monitoring station of local authority (HKEPD) has been investigated. A considerable increase of PM 

concentration was observed between 6:00 a.m. and 10:00 a.m. (caused by the surge in traffic of 

morning commuting). The roadside PM concentration level also has a rapid decline after the evening 
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traffic-intensive hours (in Hong Kong the evening rush hour usually lasts at least until 8:00 p.m. due 

to the overtime works). Considering above diurnal pattern of roadside PM and also pedestrian 

activities, all measurement sessions were performed within the time range of 2:00 p.m.–8:00 p.m. 

(during which the hour-to-hour changing gradient of background PM concentration is smaller than 

other hours).  

During the field measurement, a measurer keeps walking through the study area along a 

designated route at a typical pedestrian walking speed of 3 km/h (0.8 m/s) [42] carrying the 

calibrated instruments, so the spatial variation of PM concentration at pedestrian level can be well 

observed. There are both a forward and a backward walkthrough along the route in each 

measurement session to eliminate the bias of the different walking directions along the route. Even 

in an extremely crowded street environment with fast-paced traffic flow, the measurement was still 

designed to gather spatial information as comprehensive as possible. During the measurement 

campaigns, at those streets where the pedestrian crossing is available, the person was also asked to 

walk through the both sides of the street instead of only sampling the PM2.5 concentration level on a 

single side of the street. The data measured while crossing the street were also kept to understand 

the PM2.5 concentration at the road center. The maximum walking time is set to 2 h for each study 

area to make sure that the background concentration level and weather conditions have no 

significant changes.  

 

Figure 2. The instrumentation of the backpack measuring unit, and the walking measurement routes 

in the three selected study areas for measuring the pedestrian-level PM concentration. (The walking 

measurement routes shown in this figure are labelled based on the forward direction of the 

walkthrough). 

2.3. Geospatial Interpolation Methods 

Spatially continuous data of air pollution concentration play an important role in depicting 

urban air quality, but acquiring such data is not an easy task [43,44]. Different approaches have been 

applied to acquire spatially continuous air pollution concentration data, including remote sensing 

methods [45], computational fluid dynamics (CFD) simulation [46], and geographical mapping [47]. 

Remote sensing data have been used for mapping the spatial distribution of ground-level PM2.5 in 

Hong Kong but only at a large scale with a coarse spatial resolution [48,49]. CFD methods become 
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more popular in modeling the microenvironment air pollution, but there are still uncertainties due 

to the limitation of either the turbulent models or the computational resources [50]. The geographical 

mapping methods (based on real measured data, as a cost-effective way) have been used to map the 

microclimatic spatial distribution in the high-density urban environment of Hong Kong [51]. The 

results show a reasonably good mapping accuracy with high practicability when dealing with the 

complicated built environment of Hong Kong. Therefore, the geographical mapping method was 

selected as the main method of this study as well.  

Spatial interpolation is the key of geographical mapping. In this study, 13 types of spatial 

interpolation methods were tested and compared to map the microenvironmental spatial 

distribution of PM2.5 and PM10 (Table 1). The effects of building geometrical features measured by the 

sky view factor (SVF) and frontal area index (FAI) have been identified as determinant factors of the 

urban scale spatial variability of PM in Hong Kong [16,52]. In these studies, the road area ratio 

(RDA) as an indicator of the traffic capacity/volume of the spatially arranged road network was also 

proved to be an important predictor of the spatial variability of PM, because it largely reflects the 

traffic volume distribution under the extremely compact urban scenario of Hong Kong. In this 

present study, these three factors were calculated within the range of a microenvironmental scale 

(defined as a buffer range of 50 m) and considered as weight factors/covariates of the spatial 

interpolation to test whether they are still the dominants of the air pollution spatial distribution at 

the microenvironment scale. Implementation of different types of interpolation methods was based 

on previous studies and several practical guides of geointerpolation [53,54]. The building geometry 

data were used as the barrier layer in the KIB algorithm. 

Table 1. List of the 13 types of spatial interpolation methods used in this study. 

The 13 Types of Methods 
Basic Interpolation  

Algorithm 1 
Weight Factors 2 Covariates 2 

LPI LPI none n/a 

LPISVF LPI 1 n/a 

LPIFAI LPI 2 n/a 

LPIRDA LPI 3 n/a 

OK OK n/a none 

OCKSVF OCK n/a 1 

OCKFAI OCK n/a 2 

OCKRDA OCK n/a 3 

OCKALL OCK n/a 1, 2, 3 

KIB KIB none n/a 

KIBSVF KIB 1 n/a 

KIBFAI KIB 2 n/a 

KIBRDA KIB 3 n/a 
1 The basic interpolation algorithm: Local polynomial interpolation (LPI), Original kriging (OK), 

Original cokriging (OCK) and Kernel smoothing interpolation with barriers (KIB); 2 The weight 

factors and covariates: (1) Sky-view factor within 50-m buffer (SVF50m), (2) Frontal-area index within 

50-m buffer (FAI50m), and (3) Road-area ratio within 50-m buffer (RDA50m). 

A spatial interpolation is based on the assumption that the spatial variation in the study area 

can be explained by a spatial correlation between data points which is a function of distance [55]. 

The LPI method uses the polynomials to fit complex curves with the measured data points, and uses 

these spatial curves to create continuous prediction surface of the spatial variation. The kriging 

method (OK and OCK in this present study) develops the prediction surface by weighting the 

surrounding measured data points (based on a semivariogram model) to estimate the value of 

unmeasured locations [56]. Below formula demonstrates how a spatial interpolation works: 

�̂�(𝑆𝑢𝑛𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) = ∑ 𝜆𝑖𝑍(𝑆𝑖)

𝑁

𝑖=1

 (2) 
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where �̂�(𝑆𝑢𝑛𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) is the interpolated (predicted) value at a unmeasured location. N is the total 

amount of the measured locations. 𝑍(𝑆𝑖) is the real measured value at the location Si in the study 

area. 𝜆𝑖 is the weighting factor of the 𝑍(𝑆𝑖) resulting from fitted curves/models. 

There are two important elements that need to be examined in performing the above 

interpolations—the kernel functions and the spatial correlation of the data. The polynomials used in 

the LPI depends on a kernel function (the geointerpolation fits a prediction surface based on a kernel 

function). In this study, six types of commonly used kernel functions were tested using the 

concentration value of PM2.5 and PM10 of each study area to determine the optimal kernel function 

for the purpose of achieving the minimum interpolation error, evaluated using the root mean square 

error (RMSE). A k-fold cross validation was also adopted to avoid bias. See Section 2.4 of this 

article). Kernel functions that produce the minimum RMSE should be used for the further mapping 

process. Some interpolation methods are based on the kernel function (e.g., LPI, KIB) while many 

other spatial interpolation methods are by the semivariogram modelling such as OK and OCK 

methods. Geostatistical analysis was used to determine the optimal semivariogram model of PM2.5 

and PM10 of each study area for further spatial interpolation. The semivariogram is measured as 

follows: 

𝛾(𝑑𝑖𝑗) =
1

2𝑛(𝑑𝑖𝑗)
∑ [𝑍(𝑆𝑖) − 𝑍(𝑆𝑗)]

2

𝑛(𝑑𝑖𝑗)

𝑠𝑖−𝑠𝑗=𝑑𝑖𝑗

 (3) 

where 𝛾(𝑑𝑖𝑗) is the semivariogram. There are 𝑛(𝑑𝑖𝑗) pairs of spatial locations of measured data in 

the study area. 𝑑𝑖𝑗 is the spatial distance between the location Si and Sj. 𝑍(𝑆𝑖) and 𝑍(𝑆𝑗) are the 

measured value at the location Si and Sj in the study area. A semivariogram 𝛾(𝑑𝑖𝑗) model is a 

function of d, which depicts the spatial correlation of the value of interest in a certain spatial range. 

This spatial correlation could provide an estimation for those unmeasured locations between two 

measured locations. It is the basis of spatial interpolation. It is also an important indicator of the 

spatial independence of the data. Using the empirical semivariogram modeling method, we not 

only develop the semivariogram models as the basis of the further interpolation but also test the 

major range of the spatial independence of PM2.5 and PM10 [56]. The spatial independence enables 

the determination of the optimal spatial scale of representing the spatial variability of the data 

separately for the three study areas. The ArcGIS software (the embedded Geostatistical Analyst 

module) was used for the above geospatial analysis [56]. 

2.4. The Validation and Comparison of Interpolation Methods 

In this study, both the leave-one-out cross validation (LOOCV) and the k-fold cross validation 

were adopted to validate all resultant spatial interpolation results of PM and compare the prediction 

performance of different interpolation methods. In a LOOCV a predicted dataset is firstly generated. 

This dataset includes all predicted values from interpolation mapping for each corresponding 

location of the measured points. Then, a simple linear regression (SLR) between the predicted value 

dataset and measured value dataset is developed. The RMSE of the SLR (between predicted and 

measured data) was calculated as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑃𝑀𝑖

‘ − 𝑃𝑀𝑖)
2

𝑛

𝑖=1

 
(

(4) 

where 𝑃𝑀𝑖 is the measured value of the PM concentration at the at the point location i of the study 

area. 𝑃𝑀𝑖
‘ is the estimated PM concentration at the pixel i (the corresponding pixel of the location i) 

in the resultant spatial interpolation mapping. To avoid estimation bias near the much localized 

fine-scale pollution emission sources, a k-fold cross validation with k = 2 was also performed. In this 

2-fold cross validation, the measured PM data was divided into two sets. The first data set is used as 

the model training dataset, while the other set was used as the evaluation dataset. The above process 

was performed twice so that each set can be used as both the training dataset and the evaluation 

dataset. The 𝑅 𝑘−𝑓𝑜𝑙𝑑
2  was calculated and used for the evaluation [57]. Both the RMSE and the 
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𝑅 𝑘−𝑓𝑜𝑙𝑑
2  were also used for the comparison of the kernel functions and the final prediction 

performance of the 13 types of interpolation methods mentioned above (in Table 1). 

3. Results 

As described in the methodology section, the optimal kernel function was identified first. Then, 

the semivariogram models were developed for each study area to determine the optimal spatial 

scale of representing the data variation. On top of that, a total of 13 types of methods were to map 

the fine-scale spatial variability of PM2.5 and PM10 in the three study areas. During this process, three 

building geometrical-related weight factors/covariates were examined. Finally, the prediction 

performance was compared to determine the best interpolation method. Figure 3 shows the general 

statistics of PM2.5 and PM10 concentration levels and the three covariates (SVF50m, FAI50m and RDA50m) 

in the three study areas. 

 

Figure 3. The quantiles box plots (10%, 25%, 50%, 75% and 90%; Mean and Standard Deviation) of 

PM2.5 and PM10 concentration levels and the three covariates (SVF50m, FAI50m and RDA50m) in the three 

study areas. 

3.1. The Optimal Kernel Functions 

The results (Table 2) show the RMSE and the 𝑅 𝑘−𝑓𝑜𝑙𝑑
2  of using six types of kernel functions for 

PM2.5 and PM10 of the three study areas. The comparison results show that the exponential kernel 

function produces the minimum RMSE and the highest 𝑅 𝑘−𝑓𝑜𝑙𝑑
2  values of the estimation of the 

spatial variation in both the PM2.5 and PM10 concentration in all three study areas. Therefore, the 

exponential kernel function is used for further interpolation. The equation below shows an 

exponential kernel function for geointerpolation (where 𝑟 is the radius of a center point, ℎ is the 

bandwidth) [56]. 

𝐾(
𝑟

ℎ
) = 𝑒−3(

𝑟
ℎ) (

(5) 

Table 2. The kernel function comparison based on the RMSE/ 𝑅 𝑘−𝑓𝑜𝑙𝑑
2  of the predicted PM 

concentration value by the LPI method. The method produces the minimum RMSE and the highest 

𝑅 𝑘−𝑓𝑜𝑙𝑑
2  values of the PM2.5 and PM10 estimation of the three study areas were italicized. 

Study Areas 

Kernel Functions 

Tsim Sha Tsui Mong Kok Causeway Bay 

PM2.5 

(μg/m3) 

PM10 

(μg/m3) 

PM2.5 

(μg/m3) 

PM10 

(μg/m3) 

PM2.5 

(μg/m3) 

PM10 

(μg/m3) 

Exponential 5.831/0.866 6.124/0.863 4.577/0.743 4.846/0.793 2.983/0.729 5.372/0.854 

Polynomial5 6.313/0.840 6.645/0.839 4.816/0.711 5.099/0.769 3.166/0.696 5.645/0.844 

Gaussian 6.073/0.854 6.387/0.853 4.767/0.719 5.045/0.775 3.169/0.691 5.668/0.837 

Epanechnikov 6.825/0.775 7.216/0.771 5.347/0.657 5.643/0.724 3.612/0.560 6.406/0.766 

Quartic 6.513/0.815 6.865/0.813 4.976/0.695 5.263/0.755 3.316/0.649 5.895/0.818 
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Constant 7.071/0.725 7.479/0.723 6.087/0.574 6.383/0.657 4.051/0.436 7.166/0.686 

3.2. The Semivariogram Modelling 

Semivariogram modelling is an essential step for geointerpolation [58]. The bin size selection 

and the model optimization were determined by taking the advantage of ArcGIS Geostatistical 

Analyst [59]. This module is able to fit an optimized semivariogram model automatically. Figure 4 

shows the six resultant semivariogram models developed for the mapping of the PM2.5 and PM10 

spatial variability in the three districts. They were used as the basis of further interpolation. The 

geostatistical analysis of semivariogram modeling for the three study areas shows that the “Stable” 

type is the optimal semivariogram model type of almost all resultant models (except the model of 

PM10 in Causeway Bay which has a “Spherical” model type). The major range of the measured 

spatial PM2.5 and PM10 data is range from 12 m (PM2.5 in Tsim Sha Tsui) to 58 m (PM10 in Causeway 

Bay). The average level of the major range is approximately 25 m, which is much smaller than the 

findings in the previous vehicular mobile monitoring study [60].  

 

Figure 4. The six resultant semivariogram models established for PM2.5 and PM10 of the three study 

areas. 

3.3. The Comparison of Prediction Performance of the Interpolation Methods 

The RMSE and the 𝑅 𝑘−𝑓𝑜𝑙𝑑
2  of the 13 different types of interpolation methods were compared 

(grouped by the interpolation algorithms and the weight factors/covariates). Table 3 shows the 

comparison results of the averaged RMSE and the 𝑅 𝑘−𝑓𝑜𝑙𝑑
2  of predicted values among the four basic 

interpolation algorithms. Except for the PM2.5 in the Causeway Bay area, the OK method produces 

the minimum RMSE and also the highest 𝑅 𝑘−𝑓𝑜𝑙𝑑
2  values for almost all other predicted values of 

PM2.5 and PM10. Overall, the OK method shows the best estimation accuracy among all methods in 

almost all study areas. LPI shows the lowest prediction performance. The performance of the OK, 

OCK and KIB methods is similar.  
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Table 3. The Comparison of the RMSE/ 𝑅 𝑘−𝑓𝑜𝑙𝑑
2  of PM concentration levels by the different 

interpolation algorithms. The method produces the minimum RMSE and the highest 𝑅 𝑘−𝑓𝑜𝑙𝑑
2  values 

of the PM2.5 and PM10 estimation of the three study areas were italicized. 

StudyAreas 

Algorithms 

Tsim Sha Tsui Mong Kok Causeway Bay 

PM2.5 

(μg/m3) 

PM10 

(μg/m3) 

PM2.5 

(μg/m3) 

PM10 

(μg/m3) 

PM2.5 

(μg/m3) 

PM10 

(μg/m3) 

LPI 5.820/0.869 6.202/0.861 4.581/0.736 4.850/0.794 3.051/0.732 5.508/0.848 

OK 4.568/0.917 4.764/0.909 3.566/0.842 3.753/0.867 2.070/0.883 3.789/0.924 

OCK 4.647/0.913 4.858/0.905 3.578/0.841 3.771/0.866 2.155/0.875 3.794/0.923 

KIB 4.733/0.908 4.943/0.903 3.631/0.835 3.818/0.863 2.064/0.885 3.853/0.922 

Table 4 shows the results and a comparison of the averaged RMSE and the average 𝑅 𝑘−𝑓𝑜𝑙𝑑
2  of 

predicted values produced by considering the different weight factors/covariates. The findings by 

this present study at the microenvironmental scale is different from the conclusion in our previous 

studies about urban-scale air quality mapping [16,52]. Our previous studies found that the 

incorporation of urban morphological factors in the geospatial modelling significantly improves the 

estimation accuracy of the spatial variation of PM concentration at the urban scale. However, it can 

be observed in this present study that only slight improvements in the interpolation performance 

were achieved in all three study areas when the fine-scale building geometrical features were 

considered in the interpolation model (either by using them as weight factors for LPI or as covariates 

for cokriging). This finding also implies the multiscale properties of the urban outdoor PM exposure 

in Hong Kong. 

Table 4. The comparison of the RMSE/𝑅 𝑘−𝑓𝑜𝑙𝑑
2  of PM concentration levels by the consideration 

either on different weight factors or different covariates. The method produces the minimum RMSE 

and the highest 𝑅 𝑘−𝑓𝑜𝑙𝑑
2  values of the PM2.5 and PM10 estimation of the three study areas were 

italicized. 

Study Areas 

Covariates/ 

Weight Factors 

Tsim Sha Tsui Mong Kok Causeway Bay 

PM2.5 

(μg/m3) 

PM10 

(μg/m3) 

PM2.5 

(μg/m3) 

PM10 

(μg/m3) 

PM2.5 

(μg/m3) 

PM10 

(μg/m3) 

None 5.043/0.898 5.361/0.890 3.987/0.803 4.205/0.840 2.434/0.828 4.436/0.895 

SVF50m (1) 5.040/0.898 5.295/0.893 3.922/0.807 4.134/0.843 2.374/0.838 4.350/0.899 

FAI50m (2) 5.061/0.897 5.287/0.894 3.907/0.810 4.122/0.844 2.447/0.826 4.394/0.897 

RDA50m (3) 5.079/0.895 5.334/0.891 3.895/0.812 4.111/0.844 2.378/0.837 4.355/0.899 

3.4. The Geospatial Mapping and the Validation 

The fine-scale spatial variability of the PM2.5 and PM10 in the three study areas were mapped 

using the optimal interpolation methods (with the best prediction performance and the minimum 

RMSE and the highest 𝑅 𝑘−𝑓𝑜𝑙𝑑
2  values). The spatial resolution of the resultant prediction surface of 

each study area was automatically determined by the algorithm embedded in the ArcGIS 

Geostatistical Analyst based on the measured data. Therefore, the spatial resolution is slightly 

different for the three study areas (and they are not the integer as well). The resultant spatial 

resolution of the prediction surfaces range from 1.4 to 1.7 m. Figure 5 illustrates the geospatial 

interpolation mapping of the PM2.5 and PM10 concentration in the three study areas. The high PM 

concentration hotspots can be clearly observed from the mapping results of each of the study areas. 

The validation results (Figure 6) show that all interpolation mappings of the PM2.5 and PM10 in the 

three study areas achieved a satisfying prediction performance. 
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Figure 5. The resultant interpolation mapping of the PM2.5 and PM10 concentration in all three study 

areas. 

 

Figure 6. The validation of all resultant interpolation mappings of the PM2.5 and PM10 concentration 

in the three districts. 

4. Discussion 

Studying the microenvironmental scale of air pollution is essential in the assessment of human 

exposure of Hong Kong residents to air pollution. This present study is a pilot test to depict the 

fine-scale spatial variability of PM in an extremely compact built environment using geospatial 

interpolation techniques. A previous local attempt has been made to understand the 

microenvironmental scale human PM exposure in several districts in Hong Kong [26]. There are also 

attempts at measuring the spatial variation of ground-level PM by conducting mobile monitoring 

method [16,61]. However, a major limitation of these prior studies is that the fine-scale spatial 
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variation of pedestrian level PM is not fully depicted. The fixed monitoring and vehicular mobile 

monitoring cannot effectively detect the PM hotspots caused by the localized emission sources in the 

study areas. To overcome all the above limitations, we conducted a microenvironmental scale 

mapping of the spatial variability of PM2.5 and PM10 using geospatial interpolation mapping based 

on the measured pedestrian level PM data. It could provide more detailed information in the 

representation of the pedestrian PM exposure.  

4.1. Spatial Variability within Districts—The Necessity of a Multiscale Understanding 

According to the results, the average level of the spatial scale of the PM variability (measured as 

the major range) is approximately 25 m—much smaller than the findings in the previous vehicular 

mobile monitoring study [61]. This finding confirms that the fine-scale spatial variability of 

pedestrian level PM can only be effectively monitored by a personal level exposure measuring unit. 

Typically, the PM2.5 concentration at road center should be higher than at the roadside because of the 

dominance of the on-road vehicular pollutant emission. However, the phenomenon that the PM2.5 

concentration was higher at the sidewalks but lower at the center of some streets were observed in 

the resultant mappings of this present study. The PM2.5 concentration at is not necessarily lower than 

the center of the streets. Many of fine-scale PM pollution sources are located on the roadside such as 

bus stops, parking entrance, cargo areas, and ventilation discharge outlets of restaurants/commercial 

cooking. They all have a considerably higher emission intensity of PM2.5. For example, it has been 

measured by our previous work that a couple of buses parked at a roadside bus stop could lead to an 

abnormally high PM2.5 concentration [16]. A majority of the large number of restaurants, most of 

them Chinese [62], are located at the ground-level of a high-rise building podium on the roadside. 

They stand next to a narrow pedestrian sidewalk, with ventilation discharge outlets along the 

roadside. 

The above findings also imply that a set of multiscale measures must be taken to control the 

urban outdoor PM exposure level in Hong Kong. To be more specific, urban environmental 

planning strategies are necessary to enhance the dispersion of PM at the urban scale. Meanwhile, the 

fine-scale emission sources in the urban downtown area (for example, the densely distributed bus 

stops [27], restaurants and commercial cooking [28]) also have to be properly inventoried and 

regulated. 

4.2. The Difference in Determinants of the Urban Air Pollution Spatial Variability 

Continuing the above discussion, the spatial variation of urban air pollution is multiscale 

[63,64], which means that the dominant factors and determinants of the spatial variability at 

different spatial scales (i.e., at the street scale and urban scale) are also different. Our previous study 

confirms that the urban morphological/building geometrical factors significantly determine the 

spatial distribution of PM2.5 and PM10 concentration and also the spatial distribution of many other 

kinds of air pollutants at the urban scale in the compact urban environment of Hong Kong [52]. It is 

due to the influence of urban surface aerodynamic properties in the urban boundary layer climate 

and the atmospheric pollutants dispersion. However, the dominant effect of building geometrical 

features does not appear in the geospatial interpolation mapping of pedestrian level PM at the 

microenvironmental scale (a much smaller spatial scale of than the urban scale). Only slight 

improvements in the interpolation performance were achieved in all three study areas when the 

fine-scale building geometrical features were considered in the interpolation model either by using 

them as weight factors/covariates. For each study area, several high PM concentration hotspots can 

be clearly observed from the mapping results (Figure 5). Currently, there is still no well-established 

inventory/database of fine-scale air pollution emission sources in Hong Kong. In such case, 

conducting site survey could be a way of investigating the causes of these hotspots. By 

comparatively analyzing the interpolation mapping results of the PM in each study area and 

corresponding video records during the measurement campaigns and the information gathered 

during the site survey, it has been found that the spatial distribution of high PM concentration 

hotspot locations is highly consistent with the locations of local PM pollution sources (mainly 
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includes busy street/crossroads, bus stops, parking entrance, cargo areas, and those ventilation 

discharge outlet of restaurants/commercial cooking). The above also supports the argument that the 

fine-scale emission sources in the urban downtown area must be properly inventoried and regulated 

to improve the pedestrian level air quality. 

4.3. Outlook for a Feasible Way of Mapping the Fine-Scale Spatial Variability in Air Pollution Exposure Using 

Big Data 

The geospatial interpolation was adopted to explore the pedestrian-level air pollution 

concentration in three representative commercial districts of Hong Kong at the microenvironmental 

scale with the PM data collected by the individual walking-based measurement campaigns. The 

good mapping accuracy and reasonable validation results of this study (Figure 6) prove that the 

measured data from the individual measurement unit are competent at providing information for 

the depiction of fine-scale spatial variability of urban air pollution. Compared with the 

conventionally fixed measurement at sparsely distributed monitoring locations, using the individual 

measurement is a more cost-efficient way to provide more detailed spatial information. More 

importantly, by measuring the spatial variability of air pollution using the individual walking-based 

measurement, this study shows the high feasibility of creating big data of spatial information on 

urban air quality based on individual air pollution exposure measurement by regular residents. 

With the rapid improvement in air quality monitoring technology, air quality sensors are becoming 

much more portable. Mobile communication devices such as smart phones and tablets with 

cellular/WIFI signals make it possible to upload real-time air quality monitoring data from the 

portable air quality sensors for the building up of big data. These big data could be extremely 

precious and useful for the human exposure assessment and urban environmental management. 

With the big data on urban air quality with abundant spatial information, the prediction accuracy of 

the Hong Kong Air Quality Health Index (AQHI) [65] could possibly be promoted to a new level. 

4.4. Limitations and Future Works 

It should be noticed that the geointerpolation is still based on the assumption of a certain 

function of distance, which largely relies on mathematics and algorithms. A numerical modelling 

with comprehensive environmental considerations could lead to more robust estimates. However, 

most of the street canyon studies are using idealized cases for parametric comparison study [46,66]. 

As discussed, it is challenging to use numerical modelling to depict a real site without a 

comprehensive inventory of small-scale air pollution emission sources. In such case, although there 

are inherent uncertainties of the geointerpolation, the personal exposure measurement and the 

geospatial interpolation of this present study still provide valuable information about the fine-scale 

spatial variability of the pedestrian level PM2.5 concentration. This initial study is a starting point for 

a comprehensive investigation of small-scale spatial variability of air pollution and evaluation of 

pedestrian level personal exposure. Further works should and will focus on refining the method, 

evaluating its uncertainties where possible, understanding its sensitivities to the changes in technical 

details of the measurement campaign and the input data. Further fine-tuning should be performed 

to keep improving the robustness of the interpolation results. 

5. Conclusions 

This present study is an initial attempt to investigate the fine-scale spatial variability of the 

pedestrian level PM in a compact built environment using geospatial analysis methods with real 

measured individual PM exposure data. Using a self-assembled backpack outdoor environmental 

measuring unit, we investigated the fine-scale spatial variability of PM in three of the most 

representative commercial districts of Hong Kong. The geospatial interpolation was then used to 

analyse the data and to map the microenvironmental PM spatial variation. The results show that the 

original cokriging with the exponential kernel function provides the best performance in the PM 

mapping. Using the fine-scale building geometrical features as covariates slightly improves the 
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interpolation performance. The study results also imply that the fine-scale, localized pollution 

emission sources heavily influence pedestrian exposure to PM. The validation results confirm that 

the microenvironmental scale mapping of pedestrian-level PM provides better spatial information 

for exposure assessment and environmental management. 
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